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Motivation

• The current computer architecture has moved towards the
multi/many-core structure.

• However, the algorithms in the current sequential dense numerical linear
algebra libraries (e.g. LAPACK) do not parallelize/scale well on
multi/many-core architectures.

• A new family of algorithms, the tiled algorithms, has recently been
introduced to circumvent this problem.
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Motivation

Tiled algorithms seek to alleviate these by
• using asynchronous scheduling of tasks to remove synchronization points

• breaking up the larger tasks to allow for fine-grained parallelism

• enabling better (optimal) memory-to-computation ratio (“communication
avoiding”)
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Tiled Algorithms - Data Layout

Reordering the data of the matrix into smaller regions of contiguous memory
enables having the data layout match the algorithm.

Thus an n × n matrix is made up t tiles of size nb × nb so that n = t · nb .
The tile size becomes a tuning parameter and can depend upon the machine
as well as the algorithm.
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Tiled QR Factorization

A QR factorization of a rectangular matrix A is a decomposition of A as

A = QR

where Q is a unitary matrix (i.e. QT Q = I) and R is an upper triangular
matrix. If A is nonsingular, then this factorization is unique when R is
required to have positive diagonal entries.

MATLAB uses this to solve
Ax = b

QRx = b =⇒ Rx = QT b

Solve this using back substitution.
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Goal
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Tools

code name weight

GEQRT 4

TTQRT 2
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Updates

code name weight

UNMQR 6

TTMQR 6
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Example
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Rules

• Every tile below the diagonal must become a zero.

• Every tile on the diagonal must become a triangle.

• Every triangularization or zeroing requires an update.

• Updates must be applied in order.

• Only a triangle can zero another triangle.

• Before triangularizing, tiles to the left must be zeros.
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Model Variables

Update after triangularization

wikl = t ∈ [0,T ] : if we finish the update of tile (i , k) at time t
( This update was necessitated by xil = s : l < k, s < t).

Triangularization

xik = t ∈ [0,T ] : if we complete triangularization of tile (i , k) at time t

Update after zeroing

yijkl = t ∈ [0,T ] : if we finish the update of tiles (i , k) and (j, k) at t
( This update was necessitated by zijl = s : l < k, s < t)

Zeroing

zijk = t ∈ [0,T ] : if we complete zeroing tile (i , k) using tile (j, k) at t
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Example Constraints

After a tile is triangularized, updates must occur in the next columns.

xik ≤ wilk − 3 ∀ i , k < q, i ≥ k, l > k

Tiles strictly below the diagonal must be zeroed at some point.∑
j

ẑijk = 1 ∀ i > k

After a tile (i , k) is zeroed, we can’t use it to zero.

zijk ≥ zhik ∀ h, i , j, k
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Known Results

• Greedy is not optimal!

• If the number of processors is unlimited, then an optimal procedure is
known.

• If the number of processors is limited, then the optimal routine is not
known.
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Optimal vs. Existing

If the matrix is divided into 6 rows and 3 columns of tiles, and 6 processors
are available, the optimal schedule is better than any known method. Also,
the zeroing pattern does not match any known algorithms for Tiled QR.

1 2 3
1 ∗
2 1 ∗
3 1 2 ∗
4 1 2 3
5 1 2 3
6 2 4 4

(a) Optimal

1 2 3
1 ∗
2 1 ∗
3 1 2 ∗
4 1 2 3
5 1 2 3
6 1 2 3

(b) Flat Tree

1 2 3
1 ∗
2 1 ∗
3 2 2 ∗
4 1 3 3
5 2 3 4
6 3 4 5

(c) Greedy
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So where is this useful?

• Solving the IP model takes quite a bit of time.

• We have a collection of matrices where optimal is better than any
existing method.

• For example: the optimal for 6× 3− 6 takes 7% less time than any
known method.

• Many image processing examples involve repeatedly factoring matrices
that are the same size.
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Conclusion

Why does this matter?
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